
N95- 17234

I/0< C7

AUTONOMOUS MISSION PLANNING AND SCHEDULING-INNOVATIVE, 0"

INTEGRATED, RESPONSIVE

Charisse Sary
Simon Liu

Computer Sciences Corporation

Larry Hull

NASA/Goddard Space Flight Center

Randy Davis

Laboratory for Atmospheric and Space Physics

University of Colorado at Boulder

ABSTRACT

Autonomous mission scheduling, a new

concept for NASA ground data systems, is a
decentralized and distributed approach to

scientific spacecraft planning, scheduling, and
command management. Systems and services

are provided that enable investigators to

operate their own instruments. In

autonomous mission scheduling, separate
nodes exist for each instrmnent and one or

more operations nodes exist for the

spacecraft. Each node is responsible for its

own operations which include planning,

scheduling, and commanding; and for

resolving conflicts with other nodes. One or
more database servers accessihle to all nodes

enable each to share mission and science

planning, scheduling, and commanding
information. The architecture for

autonomous mission scheduling is based upon
a realistic mix of state-of-the-art and

emerging technology and services, e.g., high

performance individual workstations, high
speed communications, client-server

computing and relational databases. The

concept is particularly suited to the smaller,

less complex missions of the future.

INTRODUCTION

NASA's scientific spacecraft are unique and

valuable resources, so it has always been an

important part of mission operations to assure

that the time a scientific spacecraft spends in

space is utilized as fully as possible in making

observations and conducting experiments. To

achieve this, most NASA missions plan their
scientific activities well in advance; convert

those plans into formal spacecraft and

instrument schedules on a daily, weekly or

monthly basis; and then generate and uplink

the commands needed to carry out the
scheduled activities.

There are two principal types of mission

scheduling problems for NASA. The first

type arises when a spacecraft must perform a

large number of activities in serial fashion.

An example is the Hubble Space Telescope

(HST). There are always hundreds of

proposed observations in the queue for the

HST, and typically only one observation can
be made at a time. HST schedulers must

select the observations to be supported and

then lay them out as single thread of

activities. The problem is complicated further

by the fact that an experiment may require
several observations: if the HST is scheduled

to look at a particular target today, then it

may also be committed to viewing the target

on future occasions as well. Serial scheduling

problems are well known (they occur in many

terTestrial applications), but they are

inherently difficult and time consuming to

solve. Developers of automated schedulers

for space missions that must handle this kind

of problem tend to concentrate on devising

481

:i _

! ili, _i_

:iilil

algorithms that increase scheduled observing

time while reducing the processing time

needed to generate the schedule.

The second type of mission scheduling

problem is where a spacecraft can perform a

number of major activities in parallel. An
example is the forthcoming Earth Observing

System (EOS) AM satellite which will carry

instruments that can conduct their observing

programs simultaneously and more-or-less

independently of one another. It has long

been recognized that this kind of parallel

scheduling problem allows for a distributed

solution. Investigators, responsible for each

instrument on a spacecraft, generate the
schedule for their own instrument. These

detailed instrument plans can be collected and

combined with a plan for spacecraft

housekeeping activities to form a master
schedule that can then be checked for

conflicts or resource over-subscription.

Since 1986, the Data Systems Technology

Division at Goddard Space Flight Center

(GSFC) has been investigating scheduling

issues relevant to GSFC missions through

analysis, prototyping tasks, and testbeds.
Recent work has concentrated on EOS and

studies of planning and scheduling in a
distributed environment. Because the

scheduling of observations by most EOS

spacecraft falls into the parallel scheduling

category described above, the EOS project

decided to sponsor an EOS Planning and
Scheduling Testbed project during 1992-

1993, to explore issues associated with

distributed instrument scheduling.

The EOS Testbed was successful in

demonstrating that distributed planning and

scheduling is feasible for a project like EOS.
Several important problems were discovered,

but not resolved, however. For example, it

proved difficult to keep all of the nodes'
scheduling activities synchronized. The

scheduling process required substantial

coordination between personnel at all nodes.
Even when nodes coordinated there were

problems, such as nodes not having the most

up-to-date ephemeris data available for use in

their scheduling.

An interesting result from the EOS Testbed
was that conflicts between instruments were

usually best resolved by making the

instrument investigators aware of the problem

and letting them work it out for themselves.
To aid in conflict resolution, it would have

been useful for investigators to be able to see
schedules for instruments other than their own

(a feature that the EOS Testbed did not

provide). As the testbed progressed the need
for a "central scheduler" became less clear.

Ideally, every scheduling node---not just the
central scheduler--would have access to all

information needed for scheduling, and every

node would be able to view the spacecraft

schedule and any instrument schedule. The

ability to detect constraint violations and

conflicts, and the potential to automatically

resolve simple conflicts, are important

capabilities for a distributed scheduling

system. However, these functions need not

be implemented within a central scheduler.

An autonomous mission scheduling concept

has been developed that may eliminate the

problems noted above. As shown in Figure 1,

separate nodes exist for each instrument and

one or more operations nodes exist for the

spacecraft. Central to this concept is one or
more databases that make needed information

available to all nodes. For example, the most

up-to-date ephemeris data is always available

in a database. Similarly, all nodes have
access, via the database(s), to the most current

schedules for the spacecraft and for all

instruments. All scheduling system
transactions become transfers of information

to or from a database, using a standard query

language (SQL). The schema of a scheduling

database is flexible and easy to modify, so
new information can be added as needed.

Along with the database approach, the

autonomous mission scheduling concept
proposes a client-server architecture for a

distributed scheduling system. Services, like

resource tracking, conflict detection and

482

i:_i_:• / "

_iii:/i: :;;i

i:'i<J I
i ¸ •_ii:i _i

/!'

i:!_ .

?i?_, ,

_>:.

conflict resolution, can be invoked by a

scheduling node as needed. Distributed
scheduling may be one of the first

opportunities to actually apply the client-

server architecture to space mission

operations.

Figure 1. Decentralized and Distributed
Scheduling

We believe that, even with the trend toward

smaller and simpler spacecraft, distributed

scheduling systems may provide new and

exciting capabilities. For example, multiple

investigators can independently schedule the

use of a single shared spacecraft or
instrument, or simultaneous observations

fi'om multiple spacecraft.

The autonomous mission scheduling

operations concept supports key features of
the Reusable Network Architecture for

Interoperable Space Science, Analysis,
Navigation, and Control Environments

(Renaissance), a new approach to the

development and operation of Mission
Operations and Data System Directorate

(MO&DSD) ground data systems. This

approach avoids technical obsolescence and

facilitates hardware and software reuse by

using generic components to support science

and mission operations. With generic,

reusable components, ground data systems

will be rapidly and inexpensively built by

tailoring components for each new mission.

Each ground data system will consist of a

number of physically independent, possibly

geographically distributed nodes. These
nodes would operate together and participate

in coordinated planning, scheduling, and

commanding using client-server computing

and standards-based open systems.

ARCHITECTURE

The autonomous mission scheduling

architecture is distributed with application

functionality and data partitioned between
workstations (clients and servers) connected

to local area networks (LANs). Autonomous

mission scheduling functions are allocated to

components or nodes, and nodes are

integrated together to produce a ground

system for a target mission. Many different

ground system architectures are possible by

integrating different combinations of
functions and nodes. A typical autonomous

mission scheduling architecture is illustrated

in Figure 2.

In this architecture, a Mission Operations
Center (MOC), the database server, the Flight

Dynamics Facility (FDF), and the Network
Control Center (NCC) are all located at

GSFC. Since a Science Operations Center
(SOC) is remote, the MOC and SOC do not

share telemetry processing and state vector
determination functions. The FDF located at

GSFC, provides orbit and attitude planing and

scheduling aids. The NCC, located at GSFC,

provides network scheduling data to the MOC

and remote SOC. A specialized node, a
database server, at the MOC, receives and

stores this data. Nodes store planning,

scheduling, and commanding data on the

database server, and may access other nodes'

planning, scheduling and commanding data of
interest as well. Nodes can access a database

483

....... • .. : .L:.. • . : •;. H :.:. :.:..•HH:HL:: .H: /:'. :.L/:.L/:: "'_'+.::::+:+::+:::+'::::::::::::;:':':::::::::::::::::::<::i:

server whether they are remote or not, the

only difference being in the kind of network
mterface used; remote nodes access the

database server through a wide area network
(WAN) and local nodes through a LAN. The
database server node also detects inter-

in strument and instrument-spacecraft

exceptions, and notifies affected nodes to

begin negotiations in order to resolve the

exception. GSFC nodes communicate with

one another through a LAN, while the remote
SOC communicates with GSFC nodes

through a WAN.

asr-g
MOC

(" Operatlona Node

I DatabaseSetup I _ Network
and Maintenance _ Corl_roJ

l sp_r_ct_ sen_e J Center
i Genera_on and tvlalntec_anceJ

I spocecratxCommand Data J
Generation and Maintenance J

" Databa Server

Dotobo_ M_t

• ,_ I

i Database Setupand Maintenance]

I Ir_rume_t Schedule I

Gen, eratlon and Maintenance J

I Imtrument Command Data i

Generatlo_ and Malntenance J

Excepllon Nego1_a_on I

Telemetry Pr_.e_ng]

I I

J i Flight ! /

Dynamic8
Ft__.illly

J

I Flight

. ':_ _.: ,

J Telemetry PrOng i

I State Vector Deteernlnallon]

Rm SGC

Figure 2. Architecture

The Instrument Node, the Operations Node,
and the Database Server Node share several

functions. The Database Setup and
Maintenance function enables remote or client

nodes to access the database server for

common planning, scheduling, and
commanding data. It stores network

schedules, received from the NCC, on the

database server, and notifies nodes when this

data is initially available. It also maintains
the node's local database, which contains data

not useful or accessible to other nodes.

The Schedule Generation and Maintenance

function generates and stores, on the database

server, coordination and operation constraints

and activity definitions for the instrument or

spacecraft. This information describes

nominal operations and planned unique

operations and will be used by the database

server to detect exceptions later. This

function plans and schedules resources to

support spacecraft or instrument operations

(e.g., scientific observations, calibrations,

maintenance), generates and maintains
spacecraft or instrument schedules, and stores
these schedules on the database server. It

designates, as a part of each scheduled

activity, the appropriate commands or

command sequences to invoke an activity.
This function accesses the database server for

planning and scheduling data, including data
received from the NCC, network resource

support schedules, coordination constraints,

and activity definitions.

The Command Data Generation and

Maintenance function stores instrument or

spacecraft command definitions on the
database server. Command definitions are

used to generate command data and to detect

command exceptions. This function extracts

the appropriate command or command

sequence from command definitions, inserts

the necessary parameters, creates the node
command data, and stores this data on the

database se_wer. It converts composite

(instrument and spacecraft) command data to

binary, creates a network packet, and uplinks

command data to the spacecraft during a

Tracking and Data Relay Satellite System
(TDRSS) contact. This function also extracts
real time command data from the database

server, converts command data to uplink

format, and uplinks the result when specified

to the spacecraft for execution when received

onboard. It resolves commanding exceptions,

484

1:2::i i ! ::_: <::::,:: ::: : ;<: :.. :: : ': H : - • > : : .. :,::_ : , + • :+: .<•H:>>.: ::: :H:+:+:.>>>: :+:::: >+. ::::.+>:+ :+:+: +:+:+ +:+:+:+ _::_::::_:.:+_._+:+:+:+:+:+:+:.:+:+:+:+:;:::::::::::::::::_:+:+:+:.>:.:._.:.:.:.:.:.:.:.:.:.:.:+:.:.:.:`_._:_:._._._._;_

i ¸

ill!,i!!_i_,

validates and verifies command data, and

maintains command history.

Deviations from normal behavior or

unexpected situations are exceptions. The

Exception Negotiation function coordinates

and negotiates with other nodes to resolve

exceptions, following the receipt of a message

indicating that an exception has occurred.

The Database Management function, provided

by a commercial Database Management

System (DBMS), manages planning,

scheduling, and commanding data stored by

nodes. This includes insuring that the data is
stored, modified, and accessed correctly, that

the security and integrity of the data is
maintained, and that distributed, conculTent,

reliable, and efficient access is provided.

The Exception Detection and Notification
function notifies nodes when new data is

available, checks schedules and command

data for exceptions, creates a message

describing the exception, and forwards the

message to affected nodes.

CONCEPT

Long Term Planning

and calibration activities. The long term

science plan also includes planned, unique

operations such as contingency and

emergency activities and details concerning
coordinated activities and observations.

Based on the long term plan, scientists and

flight operators define and store information
in the database. The information includes

inter-instrument and spacecraft coordination

constraints; activity definitions which depict

normal operations; command definitions

which specify commands, command

sequences, and parameters for activity

execution; and operation constraints to
maintain the health and safety of instruments

and spacecraft subsystems.

Initial Scheduling

A large number of instruments have repetitive

data acquisition cycles. These natural cycles

are not necessarily the same for all

instruments on a given mission, and some

instruments do not have such cycles, e.g.

targeting instruments. Nevertheless,

instruments with natural repetitive data

acquisition cycles find it easiest to plan and
schedule instrument activities within these

cycles.

i:!ii

Long term mission planning establishes

mission objectives in an overall science

operations plan and a long term spacecraft

operations plan. Long term mission planning

begins with the project scientist and principle

investigators producing a long term science

plan for the instrument complement. The

flight operations team uses this long term plan

to develop a corresponding long term plan for
spacecraft operation.

With the NASA mission model evolving from

a small number of large missions to more

numerous but smaller, less complex missions,

both the long term science plan and the long

term spacecraft operations plan are expected

to be relatively brief and to cover largely

routine operation, observation, maintenance,

The objective of initial scheduling is to define

instrument and spacecraft operation,
observation, maintenance, and calibration

activities for a given interval. Initial

instrument scheduling is done at the SOC and

initial spacecraft subsystem scheduling is

done at the MOC. All participants in initial

scheduling may access available planning and

scheduling information in the database. Intra-
instrument conflicts are detected and resolved

locally at each node. Inter-instrument and

instrument-spacecraft conflicts are detected
and resolved as described in the next section.

The results of initial scheduling are stored in
the database.

In the past, for large missions, initial

scheduling was used to define requirements
for communications resources and services

485

requested from the NCC. For future smaller

missions, the initial schedule will largely be

used to detect exceptions. For the less

complex missions of the future, requests for
communications resources and services are

expected to be routine, repetitive, and largely
independent of the mission schedule.

Exception Handling

In the past, planning and scheduling systems
monitored the scheduling process

continuously to detect exceptions. For
autonomous mission scheduling, exceptions

are detected when the potential arises. An
exception does not necessarily have to be an

error but is something that requires attention.

Exceptions are detected by software and may

require special handling. Exception detection

is checking for and determining that an

exception has occurred. Exception

notification is informing nodes that an

exception has occurred. Exception handling

is responding to a notification and resolving

an exception once notified. With this
approach, once an exception is detected, it is

handled before a major problem arises.

Exceptions can be schedule or command data

exceptions. The three types of exceptions are:

,, operator errors such as failing to

produce information by a deadline or

storing incorrect information.

,, deviations from normal operations

which may or may not be erroneous.

An example of a deviation is a late

change which is not preplanned and
uses leftover available resources.

Deviations do not necessarily create
conflicts.

• resource, constraint, intra-instrument,
and inter-instrument conflicts.

When an event occurs, exception detection is

invoked. Two events that trigger exception
detection are:

If an

operator actions such as adding to,

deleting from, or updating the
database.

deadlines for performing an action or
receiving data such as missing a

deadline for receiving an initial
schedule.

exception is detected, an exception

notification message is generated and sent to
the nodes involved. If more than one node is

involved, one node is given primary authority

for resolving the conflict. The responsible
node may be:

• The owner of the activity that
contributes the most to the conflict.

• The owner of the most critical or most

important activity.

• The involved node that has the most

restrictive operation constraints.

Upon receiving a notification message, nodes

analyze exception data contained within the

message, resolve any internal errors,

deviations, or conflicts, and negotiate with

other nodes, if necessary, to resolve inter-

instrument or instrument-spacecraft conflicts.

Exception handling, at any node, is expected

to be performed manually by an operator or

automatically with user agents. Automation

will be introduced gradually based on

operator need and software maturity. Using

exception history, user agents can be

developed to handle exceptions that have

occurred previously and are likely to recur. A

unique user agent is defined for each

exception. The initial system automatically

handles only a few exceptions and contains

only a few user agents: _:_As the system

matures, it is expected to handle more

exceptions and to contain many user agents.

With user agents, the automation level can

change dynamically depending on operator

workload, level of expertise, and preference.

When an exception occurs, the system

automatically invokes the appropriate user

486

: +2 ¸ : : ::2cx:>.::+:::: ::;&:;:: :;2; :/::. +:+ .: H : <: , +:-::> >H>.:; >::.::: :.:+::>.H:>.:H . ::>:: >::>::<<>>: >..:>::: :+> :: : >>; : >H :: .>::;:: :_::_::_>::::>::X+>>:+:+:+_+:+>>_:::::::_::_:::_::::::>:+:+:+:+:+:+:+:+:+:::::::::::::_:::::::::::_:_:::::_:_:.:.:.:.:.:.:`:.:.:.:.:.:`:.:.:.

:> i_

i ¸ ::i

;__i_i!i_i
?!S i!?__

iii_!__i

:% ?

/

agent to handle the exception. However,
operators still have final authority over

decisions made. They can override the user

agent operating at a node and direct the node

to do something different than it would have

chosen automatically. Also, if an exception

occurs that the system cannot handle,

operators become involved. Human operators

may want or need to negotiate among

themselves to resolve exceptions using the

telephone, electronic mail, or other methods.

Final Scheduling

Final scheduling is the last step in the

planning and scheduling process. The final

schedule is an executable, exception-free,

composite schedule of instrument and

spacecraft operation, observation,
maintenance, and calibration activities for a

given time interval. Final scheduling is the

process of incorporating the results of the
exception handling process, and any changes

that have occurred including late changes or

targets of opportunity, in the initial schedule.

Targets of opportunity are phenomena of

interest that cannot be predicted, are often

short-lived, or are changing rapidly. As

throughout the scheduling process, final

instrument scheduling is done at the SOC and

final spacecraft subsystem scheduling is done

at the MOC. The results of final scheduling
are stored in the database where last minute

inter-instrument and spacecraft-instrumelat
conflicts can be detected and resolved as

described above. Changes are permitted as

long as there is ample time to handle them,

they do not cause an exception, and they can
be accommodated within the communications

resources and services obtained from the
NCC.

Commanding

The objective of commanding is to direct the

spacecraft and instruments to perform

scheduled or other required activities.

Commanding involves generating, uplinking,
storing, and executing command data. There

are three major levels of commanding:

normal commanding, contingency

commanding, and emergency commanding.

Normal commanding directs the spacecraft to

perform scheduled spacecraft and instrument
activities. Command data is stored in the

database so that exceptions can be detected
and resolved. When and how often command

data is generated varies by mission.

Command data is generated from scheduled

activities. Each SOC is responsible for its

own instrument command generation while

the MOC is responsible for spacecraft

subsystem command generation. The MOC is

responsible for assembling the instrument and

spacecraft command data and uplinking the

composite command data set to the spacecraft

during a communication link.

Spacecraft and instrument constraints are

defined prior to launch and stored in the
database. The MOC and SOCs validate all

spacecraft and instrument command data

before it is uplinked by the MOC. They also

verify that command data was received

onboard completely, correctly, and in

sequence, and that command data was stored

and executed properly. All onboard
command data is verified by evaluating the

appropriate return-link housekeeping and

engineering parameters. The MOC and SOC

maintain their respective command history
archives.

Contingency commanding directs the

spacecraft to perform contingency spacecraft

and instrument activities, possibly due to late

changes or targets of opportunity. Since most

contingency activities are preplanned, the
associated command data can be stored in the

database. If no preplanned command data is

available, the responsible node must generate
the command data in sufficient time so as not

to subject the mission to undue risk. When

accepted, the schedule is updated, and a new

command data set is generated and uplinked

at the appropriate time.

487

Emergency commanding directs the

spacecraft to perform spacecraft and

instrument sating operations, generally in

reaction to some potentially catastrophic
event. Emergency commanding for the

spacecraft subsystem is performed by the

MOC. Emergency commanding for an

instrument is performed by the SOC using the

results of instrument monitoring. Whenever

practical, emergency command data is

preplanned and stored in the database for later

use. If unavailable, the responsible node

generates the command data. When initiated,

emergency commands are validated and

uplinked at the next available communication

link. The responsible node monitors tile

return-link telemetry to verify the receipt and
execution of emergency commands.

FUTURE WORK

We plan to prototype the concept described

above, and plan to develop a representative

subset of components: a planning and
scheduling database at GSFC, a MOC at
GSFC, and two SOCs--one at GSFC and one

at the University of Colorado (CU). The

command management portions of the

concept will not be prototyped.

The planning and scheduling database and the

CU SOC will be implemented on VAX
workstations. The MOC and the GSFC SOC

will be implemented on SUN 4 workstations.
A commercial DBMS, SYBASE, will be used

to implement the database server functionality

with all nodes having SYBASE client

functionality for distributed access.

The MOC and SOC at GSFC will use an

enhanced Request Oriented Scheduling

Engine (ROSE) scheduler. The SOC located

at CU will use an enhanced Operations and
Science Instrument Support Planning and

Scheduling (OASIS-PS). ROSE and OASIS-
PS are written in Ada and use the

Transportable Applications Environment Plus

(TAE+) (Century Computing, Inc., 1993) for
the user interface.

REFERENCES

Buford, Carolyn. (August 1992). Scheduling

Data Representation: Concept and

Eaperience in Code 520, (DSTL-92-010).

Greenbelt, MD: NASA/Goddard Space

Flight Center.

University of Colorado at Boulder, Jet

Propulsion Laboratory, Goddard Space

Flight Center. (June 1993). Earth

Observing System Distributed Planning and

Scheduling Prototype Lessons Learned

Working Paper.

NASA/Goddard Space Flight Center. (April

23, 1993). Future Mission Operations and

Data Systems Directorate Architecture and

Ground Segment Operations Concept.

Greenbelt, MD.

Century Computing, Inc. (September 1993).

TAE+ User Interface Developer's Guide,

Version 5.3, Greenbelt, MD:

NASA/Goddard Space Flight Center.

Fahnestock, Dale. (November 18, 1993).

Renaissance, A New Approach to Ground

Data Systems. Presentation held at

Greenbelt, MD.

488

